

EMC Test Report

KeySense Testing & Certification International Co., Ltd.

1-3F, Lab Building, No.29 District, ZhongKai Hi-Tech Industrial Development Park, Huizhou, Guangdong, China

Report No: KST752E2212771Q

		Test Re	port of EMC			
Product name			Bluetooth Spea	iker		
Model number			X11			
Series Model	REAL-EL XTREM PBMSPG3	 X33, HPG240BT, boAt Stone 580, boAt Stone Beam, SVEN PS-315, Vibe 110, REAL-EL X-707, ACCESS100, MXBS-33-BK-688, NGS ROLLER TEMPO, XTREME500, ROLLER TEMPO MINI, DI1191BL, Mixx XBoost, 974130, PBMSPG3BK, PBMSPG2BK, VK-3202, FS-10, SPBT1053, Cosmos, GW-311, TWS405, TWS404, ORC0002DS, SIREN, ARG-SP-3102, VK-3201, ORC0001DS, BT77 (The just a different model number.) 				
	Name	H	luizhou Jiemeisi T	echnology Co., Ltd		
Applicant	Address			ei Street, Xiaojinkou street office, Guangdong Province, China.		
	Name	H	łuizhou Jiemeisi T	echnology Co., Ltd		
Manufacturer	Address	No.63, Qingtang Dashuling Humei Street, Xiaojinkou street office, Huicheng District, Huizhou City, Guangdong Province, China.				
	Name	Huizhou Jiemeisi Technology Co., Ltd				
Factory	Address	No.63, Qingtang Dashuling Humei Street, Xiaojinkou street office, Huicheng District, Huizhou City, Guangdong Province, China.				
Receipt date	Jan C	03, 2023	Quantity	1		
Standard		EN 55032:2015 EN IEC 61000-		5035:2017+A11:2020 00-3-3:2013+A1:2019		
Test site	1F,Lab Bui	.	rict, ZhongKai Hi-T uizhou, Guangdon	ech Industrial Development Park, g, China.		
Test period	Jan 03, 20	23- Jan 10, 202	3 Issue Date	Feb 27, 2023		
Test result	Test result The equipment under test was found to be compliance with the requirements of the standards applied.					
Tested by: Bing.	Не	Sign: M	TW Date;	lards applied.		
Reviewed by: Jac	ck.Li	Sign: Ja	mp. h Date:	かり子·2~2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Approved by:To (General manage		Sign: To	mpan Date:	7027.2.27 105U05KON		

		Contents	
Des	scriptio	n	Page
1	SUMI	MARY OF STANDARDS AND RESULTS	7
	1.1	Description of Standards and Results	7
2	GEN	ERAL INFORMATION	8
	2.1	Description of Device(EUT)	8
	2.2	EUT operating mode(s)	9
	2.3	Tested Supporting System Details	9
	2.4	Block Diagram of connection between EUT and simulators	10
	2.5	Test Facility	
	2.6	Measurement Uncertainty(95% confidence levels, k=2)	11
	2.7	Test Equipments	12
3	CON	DUCTED EMISSION AT THE MAINS TERMINALS TEST	15
	3.1	Block Diagram of Test Setup	15
	3.2	Test Standard	15
	3.3	Limits of mains terminal disturbance voltage	15
	3.4	Operating Condition of EUT	16
	3.5	Test Procedure	16
	3.6	Test Data	17
4	RADI	ATED EMISSION TEST	19
	4.1	Block Diagram of Test Setup	19

	4.2	Test Standard	19
	4.3	Limits for radiated disturbance	19
	4.4	Operating Condition of EUT	20
	4.5	Test Procedure	20
	4.6	Test Data(30MHz-1000MHz)	21
5	HARI	MONIC CURRENT EMISSION TEST	25
	5.1	Block Diagram of Test Setup	25
	5.2	Test Standard	25
	5.3	Limits of Harmonic Current	26
	5.4	Operating Condition of EUT	27
	5.5	Test Procedure	27
	5.6	Test Data	28
6	VOLT	AGE FLUCTUATIONS & FLICKER TEST	29
	6.1	Block Diagram of Test Setup	29
	6.2	Test Standard	29
	6.3	Limits of Voltage Fluctuation and Flick	29
	6.4	Operating Condition of EUT	30
	6.5	Test Procedure	30
	6.6	Test Data	31
7	IMMU	JNITY TEST RESULT	32
8	ELEC	TROSTATIC DISCHARGE TEST	33
	8.1	Block Diagram of Test Setup	33
	8.2	Test Standard	33

	8.3	Severity Levels and Performance Criterion	33
	8.4	Operating Condition of EUT	34
	8.5	Test Procedure	34
	8.6	Test Data	35
9	RADI	O FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TEST	36
	9.1	Block Diagram of Test Setup	36
	9.2	Test Standard	37
	9.3	Operating Condition of EUT	38
	9.4	Test Procedure	38
	9.5	Test Data	39
10	ELEC	TRICAL FAST TRANSIENT/BURST TEST	40
	10.1	. Block Diagram of Test Setup	40
	10.2	Test Standard	40
	10.3	Severity Levels and Performance Criterion	40
	10.4	Operating Condition of EUT	41
	10.5	Test Procedure	41
	10.6	Test Data	42
11	SURC	GE TEST	43
	11.1	Block Diagram of Test Setup	43
	11.2	Test Standard	43
	11.3	Severity Levels and Performance Criterion	43
	11.4	Operating Condition of EUT	43
	11.5	Test Procedure	44

	11.6	Test Data	45
12	RADI	O-FREQUENCY CONTINUOUS CONDUCTED DISTURBANCE TEST	46
	12.1	Block Diagram of Test Setup	46
	12.2	Test Standard	46
	12.3	Severity Levels and Performance Criterion	46
	12.4	Operating Condition of EUT	46
	12.5	Test Procedure	47
	12.6	Test Data	48
13	VOLT	AGE DIPS AND INTERRUPTIONS TEST	49
	13.1	Block Diagram of Test Setup	49
	13.2	Test Standard	49
	13.3	Severity Levels and Performance Criterion	49
	13.4	Operating Condition of EUT	
	13.5	Test Procedure	49
	13.6	Test Data	50
14	TEST	SETUP PHOTO	51
15	PHO	TOS OF THE EUT	56

1 SUMMARY OF STANDARDS AND RESULTS

1.1 Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION(EN 55032:2015+A11:2020)					
Description of Test Item	Standard	Results	Ren	nark	
Conducted disturbance at mains terminals	EN 55032:2015+A11:2020	PASS	Minimum pass -7.69dB at (• •	
Radiated Disturbance (30-1000MHz)	EN 55032:2015+A11:2020	PASS	Minimum pass -6.90dB at 30	• •	
Radiated Disturbance (1-6GHz)	EN 55032:2015+A11:2020	PASS	Minimum pass -27.23dB at 3	0 0	
Harmonic current emission	EN IEC 61000-3-2:2019	PASS	Meet the Class	A requirement	
Voltage fluctuations &flicker	EN 61000-3-3:2013+A1:2019	PASS	Meet the Clause	e 5 requirement	
	IMMUNITY(EN 55035:2017+A	11:2020)			
Description of Test Item	Basic Standard	Results	Performance Criteria	Observation Criteria	
Electrostatic discharge	EN 61000-4-2:2009	PASS	В	А	
Radio-frequency Continuous radiated disturbance	EN IEC 61000-4-3:2020	PASS	A	А	
Electrical fast transient	EN 61000-4-4:2012	PASS	В	А	
Surge	EN 61000-4-5:2014/A1:2017	PASS	В	А	
Radio-frequency Continuous conducted disturbance	EN 61000-4-6:2014/A1:2015	PASS	A	A	
Voltage dips, >95% reduction		PASS	В	А	
Voltage dips, 30% reduction	EN IEC 61000-4-11:2020	PASS	С	А	
Voltage interruptions, >95%		PASS	С	В	
N/A is an abbreviation for Not Ap	oplicable.				
Final Judgment : Pass					

2 GENERAL INFORMATION

2.1 Description of Device(EUT)

Description: Bluetooth Speaker

Model Number: X11

Series Model: X33, HPG240BT, boAt Stone 580, boAt Stone Beam, SVEN PS-315, Vibe 110, REAL-EL X-707, ACCESS100, MXBS-33-BK-688, NGS ROLLER TEMPO, XTREME500, ROLLER TEMPO MINI, DI1191BL, Mixx XBoost, 974130, PBMSPG3BK, PBMSPG2BK, VK-3202, FS-10, SPBT1053, Cosmos, GW-311, TWS405, TWS404, ORC0002DS, SIREN, ARG-SP-3102, VK-3201, ORC0001DS, BT77 (The just a different model number.)

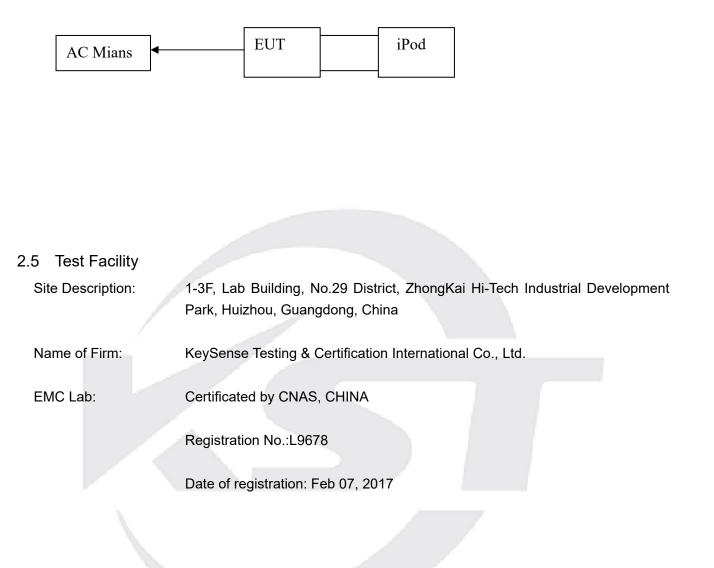
Input:

DC 5V From Adapter; DC 3.7V From Battery

Note: 1. In Emission test, a pre-test shall be made over a range of DC 5V From Adapter; DC 3.7V From Battery. The report shows only the worst data.

2.2 EUT operating mode(s)

To achieve compliance applied standard specification, the following mode(s) were made during compliance testing:


The report shows only the worst data.				
Operating mode 5	SD			
Operating mode 4	FM			
Operating mode 3	USB Playing			
Operating mode 2	BT			
Operating mode 1	AUX IN			

2.3 Tested Supporting System Details

No.	Description	KST No.	Manufacturer	Model	Serial Number	
1.	Adapter	/	NOKIA	CH-21E	/	
2	Adapter	1	HUAWEI	HW-050100U01	/	
3 iPod / Apple A1446 /						
Note: Customer ship without adapter						

2.4 Block Diagram of connection between EUT and simulators

2.6 Measurement Uncertainty(95% confidence levels, k=2)

Test Item	Uncertainty
Uncertainty for Conduction emission test in shielding room	2.5dB(150kHz to 30MHz)
Uncertainty for Radiation Emission test in 3m	4.14dB(30M~1GHz,Polarize:V)
chamber	4.25dB(30M~1GHz,Polarize:H)

2.7 Test Equipments

2.7.1 For Conducted Emission at the Mains Terminals Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal .Interval
Receiver	R&S	ESR3	102054	2022.11.07	1 year
LISN	AFJ	LS16	16011618383	2022.08.17	1 year

2.7.2 For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Receiver	R&S	ESR3	102055	2022.11.07	1 year
Trilog-boardband antenna	SCHWARZBECK	VULB 9163D	9163961	2021.12.28	3 years
Receiver	R&S	ESR7	101661	2022.11.07	1 year
Horn antenna	Schwarzbeck	BBHA 9120D	9120D-1590	2021.12.28	3 years

2.7.3 For Harmonics Current Emission Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Harmonic &	California	100-CTS-230	1626A00278	2022.08.17	1 year
Flicker analyzer	Instruments	100-013-230	1020A00278	2022.00.17	1 year
Programmable	California	5001iX-CTS-400	1629A02598	2022.08.17	1 year
power supply	Instruments	500 HA-CT 3-400	1029A02598	2022.00.17	1 year

2.7.4 For Voltage Fluctuations & Flicker Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Harmonic &	California	100-CTS-230	1626A00278	2022.08.17	1.voor
Flicker analyzer	Instruments	100-013-230	1020A00278	2022.00.17	1 year
Programmable	California	5001iX-CTS-400	1629A02598	2022.08.17	1.000
power supply	Instruments	50011X-C13-400	1029A02596	2022.00.17	1 year

2.7.5 For Electrostatic discharge Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Electrostatic					
discharge	Noiseken	ESS-L1611	ESS1643151	2022.08.17	1 year
generator					

2.7.6 For Radio-frequency Continuous radiated disturbance Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal generator	R&S	SMC100A	105651	2022.11.07	1 year
Power amplifier	PRANA	MT400	1507-1746	2022.11.07	1 year
Trilog-boardband antenna	SCHWARZBECK	STLP 9128E	9128ES-136	2022.11.07	3years
Power amplifier	PRANA	SV70	1602-1820	2022.11.07	1 year
Horn antenna	Schwarzbeck	BBHA 9120E	BBHA9120E6 98	2020.10.25	3 years

2.7.7 For Electrical fast transient Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EFT generator	Noiseken	FNS-AX3-A16C	FNS1621762	2022.08.19	1 year

2.7.8 For Surge Test

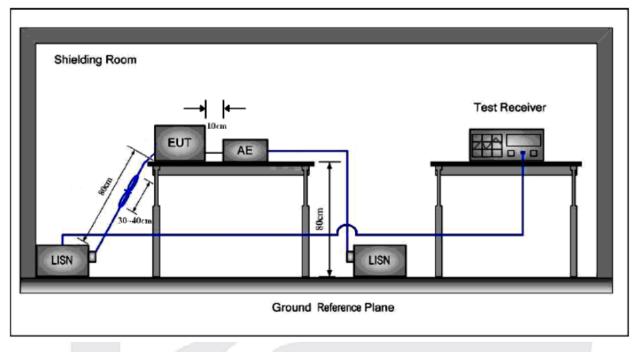
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Surge generator	Noiseken	LSS-6230A	LSS1634248	2022.08.17	1 year

	, ,				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal generator	R&S	SMC100A	105651	2022.11.07	1 year
Power amplifier	PRANA	DR220	1602-1819	2022.11.07	1 year
CND	TESEQ	M016	43434	2022.08.17	1 year

2.7.9 For Radio-frequency Continuous conducted disturbance Test

2.7.10 For Voltage dips and interruptions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Dips simulator	Noiseken	VDS-2002	VDS1510396	2022.08.17	1 year



3 CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1 Block Diagram of Test Setup

3.2 Test Standard

EN 55032: 2015+A11 2020, Class B

3.3 Limits of mains terminal disturbance voltage

Frequency range	Limits	[dBµV]
[MHz]	Quasi-peak	Average
0,15 to 0,50	66 - 56 *	56 - 46 *
0,50 to 5	56.00	46.00
5 to 30	60.00	50.00

NOTE 1 The lower limit shall apply at the transition frequencies.

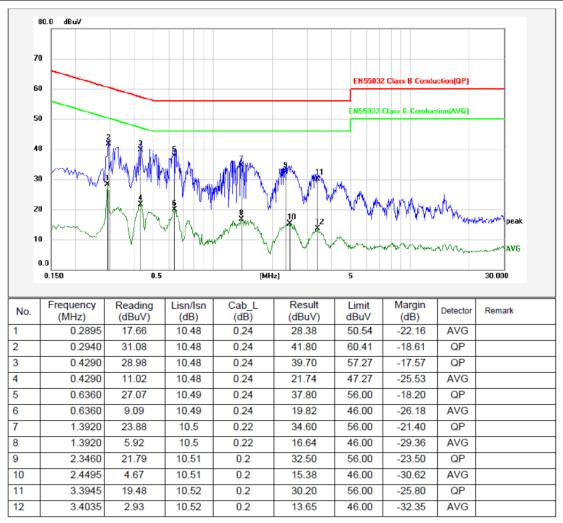
NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50MHz.

3.4 Operating Condition of EUT

Test date	Ambient temperature	Relative humidity	Atmospheric pressure
Jan 09, 2023	20°C	59%	101.0kPa

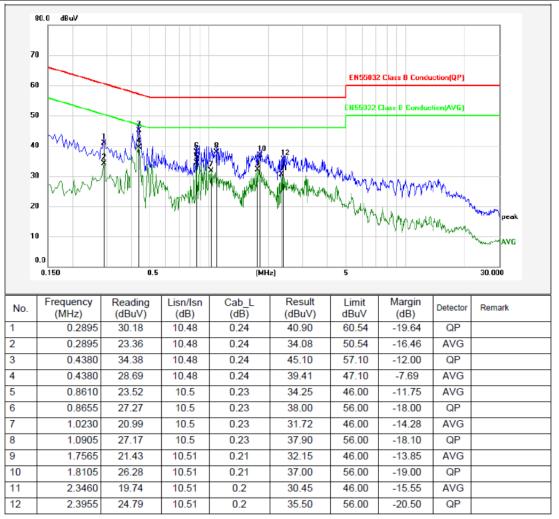
3.5 Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. #1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The side of power line was checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to EN 55032 Class A on conducted Disturbance test.


The bandwidth of the test receiver (R&S Test Receiver ESR) is set at 9kHz. The frequency range from 150kHz to 30MHz is checked.

3.6 Test Data

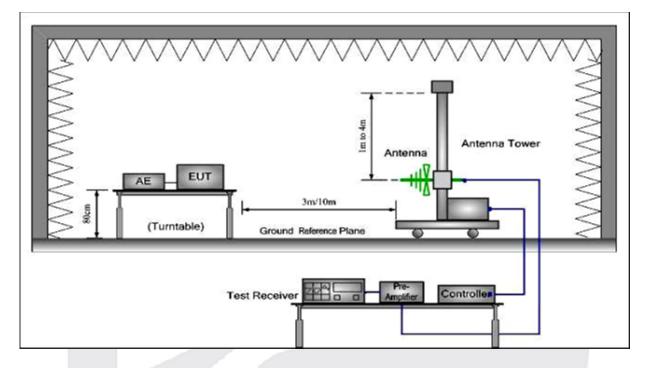
EUT:	Bluetooth Speaker	Model Name:	X11
Test Mode:	ВТ	Test Date:	2023.01.09
Phase:	Live	Test Voltage:	DC 5V From Adapter
Operator:	Bing	Note:	



Remarks: 1. Result=Reading+Lisn+Cab_L

If the average limit is met when using a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detctor is unnecessary.

EUT:	Bluetooth Speaker	Model Name:	X11
Test Mode:	BT	Test Date:	2023.01.09
Phase:	Neutral	Test Voltage:	DC 5V From Adapter
Operator:	Bing	Note:	


Remarks: 1. Result=Reading+Lisn+Cab_L

 If the average limit is met when using a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detctor is unnecessary.

4 RADIATED EMISSION TEST

4.1 Block Diagram of Test Setup

4.2 Test Standard

EN 55032: 2015+A11 2020, Class B

4.3 Limits for radiated disturbance

Frequency MHz	Distance	Limits dB(µV)/m Class B
30 ~ 230	3m	40(Quasi Peak)
230 ~ 1000	3m	47(Quasi Peak)
1000 ~ 3000	3m	70 (Peak) 50 (Average)
3000 ~ 6000	3m	74 (Peak) 54 (Average)

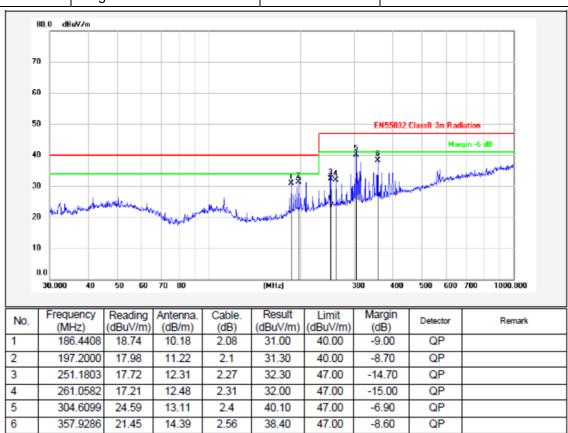
4.4 Operating Condition of EUT

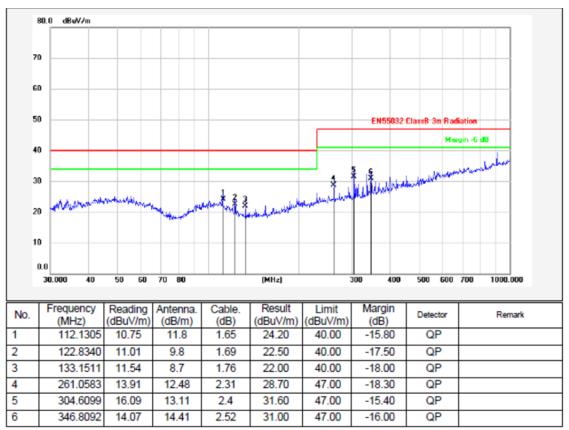
Test date	Ambient temperature	Relative humidity	Atmospheric pressure
Jan 06, 2022	20°C	60%	101.0kPa

4.5 Test Procedure

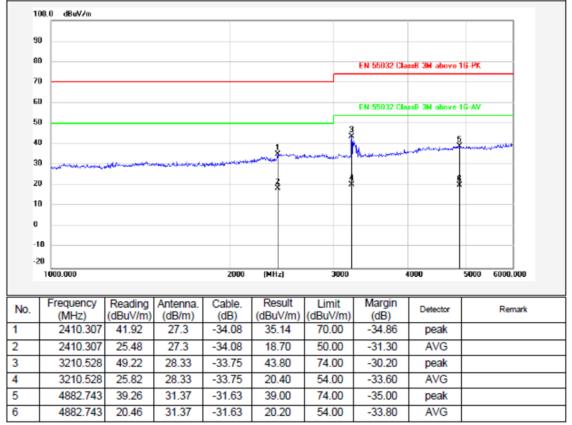
The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

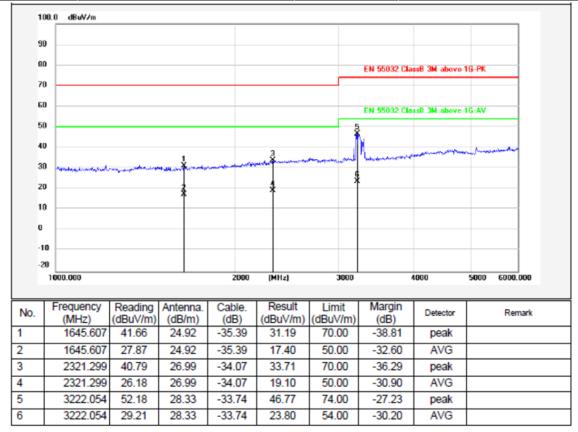
The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector.


The bandwidth setting on the test receiver was 120 kHz.


4.6 Test Data(30MHz-1000MHz)

EUT:	Bluetooth Speaker	Model Name:	X11
Test Mode:	BT	Test Date:	2023.01.06
Polarization:	Horizontal	Test Voltage:	DC 5V From Adapter
Operator:	Bing	Note:	


EUT:	UT: Bluetooth Speaker		X11
Test Mode:	ВТ	Test Date:	2023.01.06
Polarization:	Vertical	Test Voltage:	DC 5V From Adapter
Operator:	Bing	Note:	


Test data(1GHz-6GHz)

EUT:	Bluetooth Speaker	Model Name:	X11
Test Mode:	BT	Test Date:	2023.01.06
Polarization:	Horizontal	Test Voltage:	DC 5V From Adapter
Operator:	Bing	Note:	

EUT:	Bluetooth Speaker	Model Name:	X11
Test Mode:	BT	Test Date:	2023.01.06
Polarization:	Vertical	Test Voltage:	DC 5V From Adapter
Operator:	Bing	Note:	

5 HARMONIC CURRENT EMISSION TEST

5.1 Block Diagram of Test Setup

|--|

5.2 Test Standard

EN IEC 61000-3-2:2019, Class A

5.3 Limits of Harmonic Current

Limits for Class A equipment		
Harmonic order	Maximum permissible harmonic	
	current	
n	A	
Odd harmonics		
3	2.30	
5	1.14	
7	0.77	
9	0.40	
11	0.33	
13	0.21	
15≪n≪39	0.15 15/n	
E	ven harmonics	
2	1.08	
4	0.43	
6	0.30	
8≤n≤40	0.23 8/n	

Remark: If the EUT power level is below 75 Watts and therefore has no defined limits.

5.4 Operating Condition of EUT

Test date	Ambient temperature	Relative humidity	Atmospheric pressure
Jan 08, 2023	20°C	54%	101.0kPa

The details of test modes are as follows :

No.	Test Mode
1.	AUX IN

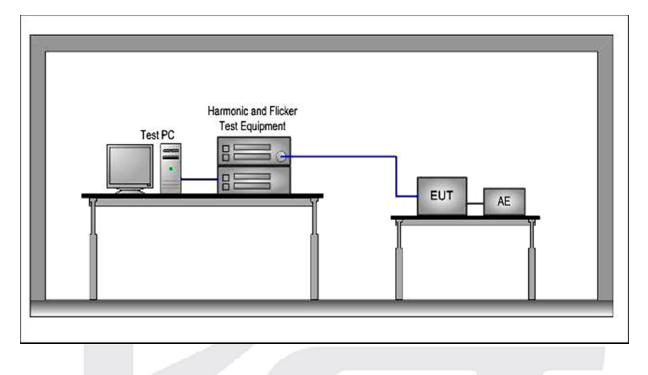
5.5 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.

The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.

5.6 Test Data

Remark:


This product has a power consumption 75W or less under normal operating conditions. It is therefore not likely to produce harmonics above the limits of the standard. The product is deemed to comply whit the standard whitout any measurements.

6 VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1 Block Diagram of Test Setup

6.2 Test Standard

EN 61000-3-3:2013+A1:2019

6.3 Limits of Voltage Fluctuation and Flick

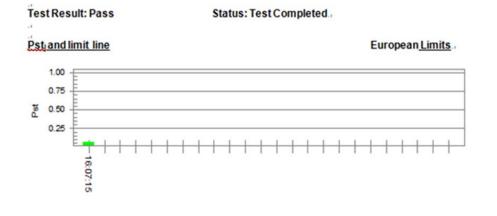
Test Item	Limit	Note	
Pst	1.0	Pst means Short-term flicker indicator	
Plt	0.65	Plt means long-term flicker indicator	
Tmax	500ms	Tmax means maximum time that d(t) exceeds 3.3%	
dmax(%)	4%	dmax means maximum relative voltage change.	
dc(%)	3.3%	dc means relative steady-state voltage change.	

6.4 Operating Condition of EUT

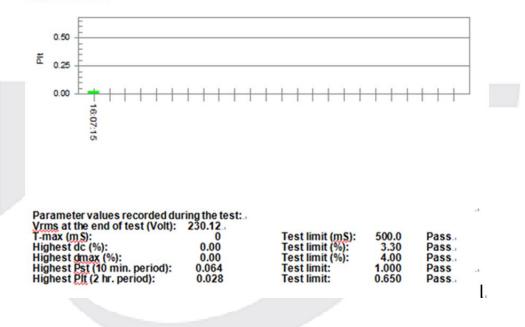
Test date	Ambient temperature	Relative humidity	Atmospheric pressure
Jan 08, 2023	20°C	54%	101.0kPa

The details of test modes are as follows :

No.	Test Mode
1.	AUX IN


6.5 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions During the flick measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.



6.6 Test Data

Plt and limit line ...

7 IMMUNITY TEST RESULT

Description of Performance Criteria:

Performance criteria A

During and after the test the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

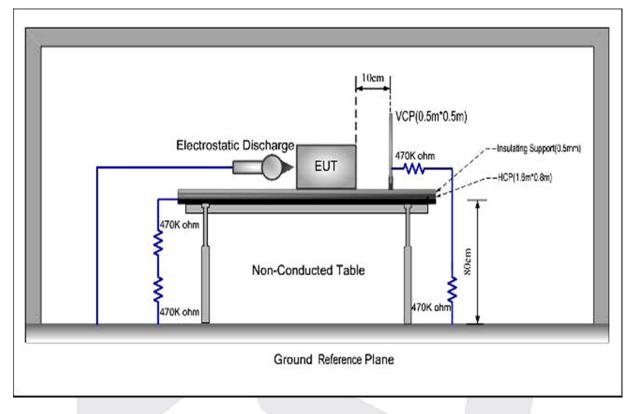
Performance criteria B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

Performance criteria C


During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a backup, shall not be lost.

8 ELECTROSTATIC DISCHARGE TEST

8.1 Block Diagram of Test Setup

8.2 Test Standard

EN 55035: 2017/A1 2020 (EN 61000-4-2) (Severity Level 1&2&3 for Air Discharge at 2kV 4kV 8kV; Severity Level 1&2 for Contact Discharge at 2kV 4kV)

8.3 Severity Levels and Performance Criterion

Severity Levels	Test Voltage	Test Voltage	Performance
Severity Levels	Contact Discharge (kV)	Air Discharge (kV)	criterion
1.	2	2	
2.	4	4	
3.	6	8	В
4.	8	15	
х	Special	Special	

8.4 Operating Condition of EUT

The details of test modes are as follows :

No.	Test Mode
1.	AUX IN
2	BT
3	USB Playing
4	FM
5	SD

8.5 Test Procedure

8.5.1 Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times for each pre-selected test point. This procedure was repeated until all the air discharge completed.

8.5.2 Contact Discharge:

All the procedure was same as Section 8.5.1. except that the generator was re-triggered for a new single discharge and repearted 50 times for each pre-selected test point. The tip of the discharge electrode was touch the EUT before the discharge switch was operated.

8.5.3 Indirect discharge for horizontal coupling plane

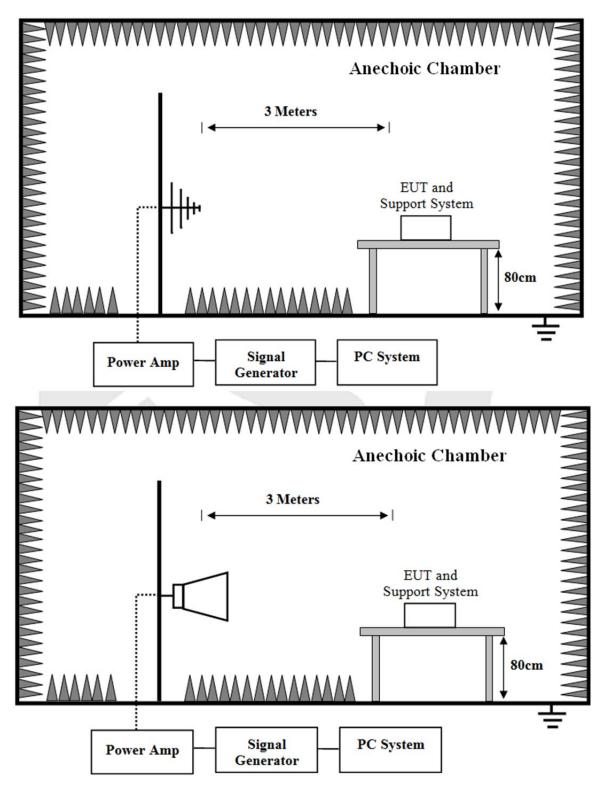
At least 20 single discharges were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

8.5.4 Indirect discharge for vertical coupling plane

At least 20 single discharge were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.6 Test Data

Electrostatic Discharge Test Results


EUT	: Bluetooth	Speaker		Temperatur	e : 21℃		
M/N	N : X11			Humidity : 50%			
Test Voltage	est Voltage : DC 3.7V From Battery			Test Date : 2023.01.09			
Test Engineer	est Engineer : Bing			Pressure : 101.3kPa			
Required	: B			Actual			
Performance	: D				: A Performance		
Air Discharge: 1	2kV ±4kV ±8kV		 # For Air Discharge each Point Positive >25 times and negative >25 times discharge 				
Contact Discharge: ±2kV ±4kV			 # For Contact Discharge each point positive >25 times and negative >25 times discharge 				
For the time inte	erval between suc	cessive single disch	arges an	initial value of	one second.		
After discharge	to the ungrounded	d part of EUT, it nee	ds the ble	eeder resistor to	o remove the char	rge prior to next	
ESD pulse							
Discharge	Type of	Dischargeable Pr	inte	Perfor	Performance		
Voltage (kV)	discharge	Dischargeable Points		Required	Observation	(Pass/Fail)	
±2	Contact	Center of VC		В	A	Pass	
			_	В	A	Pass	
±4	Contact	Center of HC	Ρ	D	A		
±4 ±2	Contact Contact	Center of HC 1,2	P	B	B	Pass	
±2	Contact	1,2		В	В	Pass	
±2 ±4	Contact Contact	1,2 1,2		B B	B B	Pass Pass	
±2 ±4 ±4	Contact Contact Air	1,2 1,2 3,4,5		B B B	B B A	Pass Pass Pass	
±2 ±4 ±4 ±6	Contact Contact Air Air	1,2 1,2 3,4,5 3,4,5		B B B B	B B A A	Pass Pass Pass Pass	
±2 ±4 ±4 ±6	Contact Contact Air Air	1,2 1,2 3,4,5 3,4,5 3,4,5 3,4,5	8	B B B B	B B A A	Pass Pass Pass Pass	
+2 +4 +4 +6 +8	Contact Contact Air Air Air	1,2 1,2 3,4,5 3,4,5 3,4,5 rt		B B B B	B B A A A	Pass Pass Pass Pass	
+2 +4 +4 +6 +8 1	Contact Contact Air Air Air USB Po	1,2 1,2 3,4,5 3,4,5 3,4,5 rt	8	B B B B	B B A A A	Pass Pass Pass Pass	
+2 ±4 ±4 ±6 ±8 1 2	Contact Contact Air Air Air USB Po AUX IN F	1,2 1,2 3,4,5 3,4,5 3,4,5 rt Port	8 9	B B B B	B B A A A	Pass Pass Pass Pass	
$ \begin{array}{c} \pm 2 \\ \pm 4 \\ \pm 4 \\ \pm 6 \\ \pm 8 \\ \end{array} $ 1 2 3	Contact Contact Air Air Air USB Po AUX IN F Slot	1,2 1,2 3,4,5 3,4,5 3,4,5 rt Port	8 9 10	B B B B	B B A A A	Pass Pass Pass Pass	
+2 +4 +4 +6 +8 1 2 3 4	Contact Contact Air Air Air USB Po AUX IN F Slot Button	1,2 1,2 3,4,5 3,4,5 3,4,5 rt Port	8 9 10 11	B B B B	B B A A A	Pass Pass Pass Pass	

The Voice appeared noise during the test, but self-recoverable after the test.

9 Radio Frequency Electromagnetic Field Immunity Test

9.1 Block Diagram of Test Setup

9.2 Test Standard

EN 55035:2017/A11 2020 (EN 61000-4-3), Frequency Range: 80-1000MHz,1800MHz, 2600MHz, 3500MHz, 5000MHz Severity Level 2 at 3V/m

Radio Frequency Electromagnetic Field Immunity Test levels

Level Test field strength V/m	Level
1 1	1
2 3	2
3 10	3
4 30	4
X Special	X
	4 X

Note: X is an opoen test level and the associated field strength may be any value. This level may be given in the product standard.

9.3 Operating Condition of EUT

The details of test modes are as follows :

No.	Test Mode
1.	AUX IN

9.4 Test Procedure

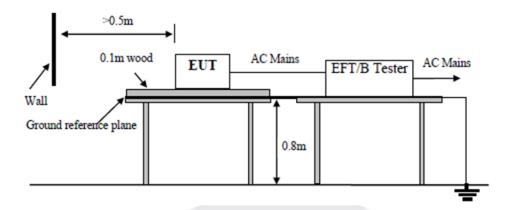
The field sensor is placed on the EUT table (0.8 meter above the ground) which is 3 meters away from the transmitting antenna. Through the signal generator, power amplifier and transmitting antenna to produce a uniformity field strength (3V/m measured by field sensor) around the EUT table from frequency range specified and records the signal generator 's output level at the same time for whole measured frequency range. Then, put EUT and its simulators on the EUT turn table and keep them 3 meters away from the transmitting antenna which is mounted on an antenna tower and fixes at 1 meter height above the ground. Using the recorded signal generator's output level to measure the EUT from frequency range specified and both horizontal & vertical polarization of antenna must be set and measured. Each of the four sides of EUT must be faced this transmitting antenna and measures individually.

Test Level				
Frequency	80-1000MHz,1800MHz, 2600MHz, 3500MHz, 5000MHz			
Test level	3V/m (Severity Level 2)			
Antenna polarization	Horizontal & Vertical			
Modulation	80%, 1kHz Amplitude Modulation			
Steps increment	1%			

All the scanning conditions are as follows :

9.5 Test Data

Radio-frequency Continuous radiated disturbance Test Results
--


Field Strength (V/m)	Test Frequency (MHz)	Test mode (worst case)	Polarization of antenna	Reference Level	Audio output	Limit	Interference Ratio (worst case)
2	80-1000MHz, 1800MHz, 2600MHz,	AUX IN	Н	75dBSPL	Headset	≤ -20	-22
3	3500MHz, 5000MHz	AUX IN	V	75dBSPL	Headset	≈ -20	-24

10 ELECTRICAL FAST TRANSIENT/BURST TEST

10.1 . Block Diagram of Test Setup

10.2 Test Standard

EN 55035: 2017/A11 2020 (EN 61000-4-4)

10.3 Severity Levels and Performance Criterion

Open Circuit Output Test Voltage ±10%				
Severity	On Dower Supply Lines	On I/O (Input/Output) Signal	Performance	
Level	On Power Supply Lines	data and control lines	criterion	
1.	0.5KV	0.25KV		
2.	1KV			
3.	2KV 1KV		В	
4.	4KV 2KV			
Х	Special Special			
The use of 5 kHz repetition frequency is traditional, however, 100 kHz is closer to reality.				
Product committees should determine which frequencies are relevant for specific products or				
product types. With some products, there may be no clear distinction between power ports				
and signal ports, in which case it is up to product committees to make this determination for				
test purposes.				

a "X" can be any level, above, below or in between the others. The level shall be specified in the dedicated equipment specification.

10.4 Operating Condition of EUT

The details of test modes are as follows :

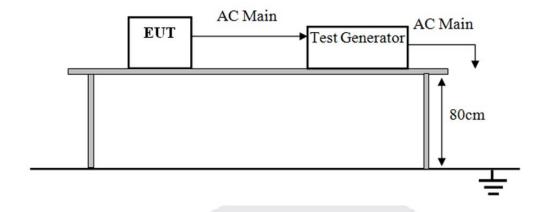
No.	Test Mode
1.	AUX IN

10.5 Test Procedure

The EUT and its simulators were placed on a ground reference plane and were insulated from it by a wood support 0.1m + 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. The length of signal and power cable between EUT and EFT generator was 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.

10.6 Test Data

Coupling Ports		Coupling Voltage	Inject Method	Result
AC Deserve Desete	L-N	±1 kV	Direct	Pass
AC Power Ports	L-N-PE	±1 kV	1	/
Remark: There was no change compared with initial operation during the test.				


Electrical fast transient Test Results

11 SURGE TEST

11.1 Block Diagram of Test Setup

11.2 Test Standard

EN 55035: 2017A11 2020 (EN 61000-4-5)

11.3 Severity Levels and Performance Criterion

Severity Level	Open-Circuit Test Voltage
	kV
1	0.5
2	1.0
3	2.0
4	4.0
*	Special

11.4 Operating Condition of EUT

The details of test modes are as follows :

No.	Test Mode
1.	AUX IN

11.5 Test Procedure

 2Ω effective output impedance of the generator was used for L-N test. 12Ω effective output impedance of the generator was used for L-PE,N-PE test.

5 positive and 5 negative (polarity) tests were applied successively synchronized to the voltage phase, 90°, 270°to L-N respectively. The repetition rate was 1 per minute during test.

(1). For input and AC power ports:

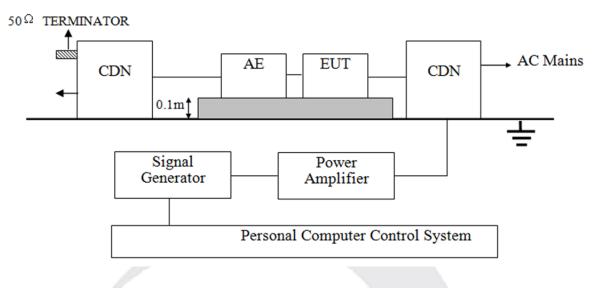
The EUT was connected to the power mains by using a coupling device which coupled the surge interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration was 1 minute.

(2). For signal lines and control lines ports: None.

(3). For DC input and DC output power ports: None.

11.6 Test Data

			Coupling Phase / Result			esult
Coupling Ports		Coupling Voltage	0°	90°	180°	270°
L-N		+/-1kV	,	Deee	1	Pass
AC power ports	L-IN	Direct	/	Pass	/	Pass
		+/-2kV	/ /	,	/	,
	L-PE	Direct		1		/
	N-PE	+/-2kV		,	1	1
		Direct		/	/	/
Remark: There was no change compared with initial operation during the test.						


Surge Immunity Test Results

12 RADIO-FREQUENCY CONTINUOUS CONDUCTED DISTURBANCE TEST

12.1 Block Diagram of Test Setup

12.2 Test Standard

EN 55035: 2017/A11 2020(EN 61000-4-6)

12.3 Severity Levels and Performance Criterion

Level	Voltage Level (e.m.f.) V
1.	1
2.	3
3.	10
X	Special

12.4 Operating Condition of EUT

The details of test modes are as follows :

No.	Test Mode
1.	AUX IN

12.5 Test Procedure

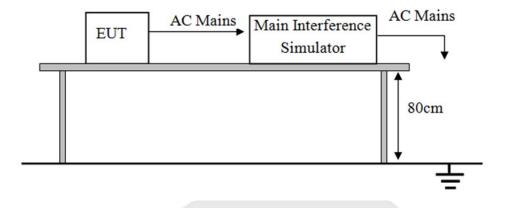
The EUT were placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) was placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT were as short as possible, and their height above the ground reference plane were between 30 and 50 mm (where possible).

The frequency range was swept from 0.15 MHz - 10 MHz, 10 MHz – 30 MHz and 30 MHz – 80MHz using 3V, 3V - 1V, 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.

The rate of sweep shall not exceed 1.5*10-3decades/s.Where the frequency was swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value

12.6 Test Data

Voltage (V)	Test Frequency (MHz)	Test mode (worst case)	Injection Method	Required	Observation	Result
3	0.15 –10 MHz	AUX IN	CDN-M2	A	A	PASS
3 -1	10 –30MHz					PASS
1	30 –80 MHz					PASS


Radio-frequency Continuous conducted disturbance Test Results

13 VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1 Block Diagram of Test Setup

13.2 Test Standard

EN 55035: 2017/A11 2020 (EN 61000-4-11)

13.3 Severity Levels and Performance Criterion

Test category	reduction	Periods	Performance criterion	
Voltage dips	>95%	0.5P	В	
Voltage dips	30%	25P/30P	С	
Voltage interruptions	>95%	250P/300P	С	

13.4 Operating Condition of EUT

The details of test modes are as follows:

No.	Test Mode
1.	AUX IN

13.5 Test Procedure

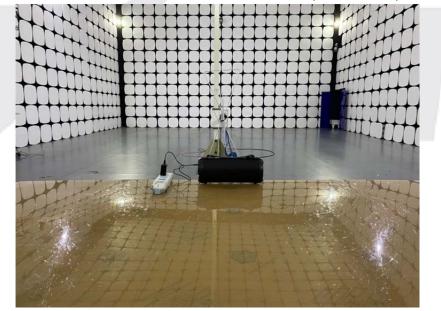
- 1) The EUT and test generator were setup as shown on Section 13.1.
- 2) The interruptions are introduced at selected phase angles with specified duration.
- 3) Record any degradation of performance.

13.6 Test Data

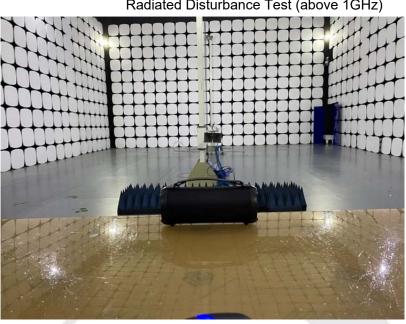
Test Level % UT	Voltage Dips & Short Interruptions % UT	Duration (in period)	Criterion	Result
0	100	0.5P	В	PASS
70	30	25P	С	PASS
0	100	250P	С	PASS

Voltage Dips and Short Interruptions Immunity Test Result $AC\;230V/50Hz$

Remark: The EUT was Stopped during the test, but self-recoverable after the test



14 Test setup photo



Conducted disturbance at mains terminals Test

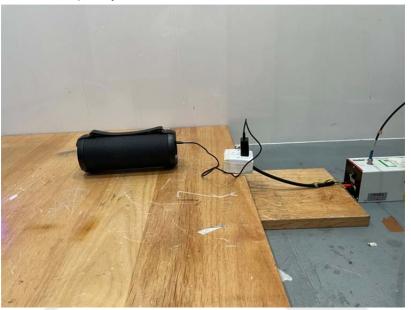
Radiated Disturbance Test (30-1000MHz)

Radiated Disturbance Test (above 1GHz)

Harmonic current emission & Voltage fluctuations & flicker Test

Electrostatic discharge Test


Radio-frequency Continuous radiated disturbance Test


Electrical fast transient Test

Surge Test

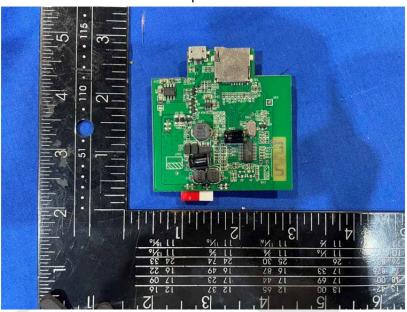
Radio-frequency, Continuous conducted disturbance Test

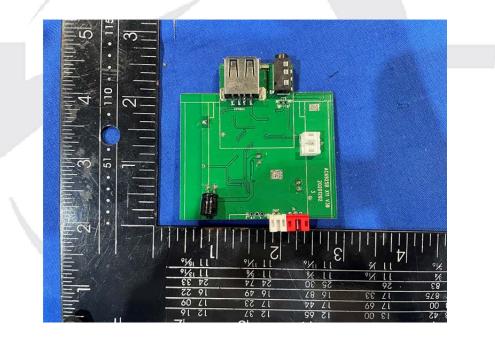
Voltage dips & interruption Test

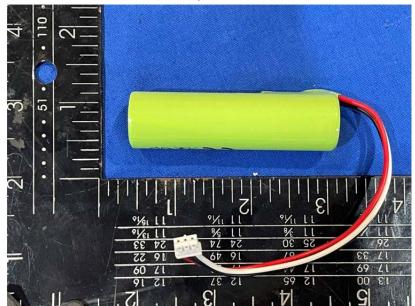
15 PHOTOS OF THE EUT

External photos

External photos


External photos





7

..... End of Report

Statement

- 1. The calibration and measurement of test equipments used in our laboratory are traceable to National primary standard of measurement and BIPM.
- 2. The report is invalid without the special test seal of the company.
- 3. The test report is invalid without the signature of main tester, examiner and approver.
- 4. The report is invalid if altered and added or deleted.
- 5. The test results in this report only apply to the tested samples.
- 6. This test report shall not be reproduced except in full, without the written approval of our laboratory.
- 7. "☆"item cannot be Accredited by CNAS.
- 8. Any objections must be raised to KeySense within 15days since the date when report is received.

Test Laboratory: KeySense Testing & Certification International Co., Ltd. Address: 1-3F,Lab Building,No.29 District,ZhongKai Hi-Tech Industrial Development Park,Huizhou,Guangdong,China Postcode: 516006 Fax: 0752-3219929 Tel: 0752-3219929 E-mail: keysense@kst-cert.com